On the Inter-relationships among Drift rate, Forgetting rate, Bias/variance profile and Error

نویسندگان

  • Nayyar A. Zaidi
  • Geoffrey I. Webb
  • François Petitjean
  • Germain Forestier
چکیده

We propose two general and falsifiable hypotheses about expectations on generalization error when learning in the context of concept drift. One posits that as drift rate increases, the forgetting rate that minimizes generalization error will also increase and vice versa. The other posits that as a learner’s forgetting rate increases, the bias/variance profile that minimizes generalization error will have lower variance and vice versa. These hypotheses lead to the concept of the sweet path, a path through the 3-d space of alternative drift rates, forgetting rates and bias/variance profiles on which generalization error will be minimized, such that slow drift is coupled with low forgetting and low bias, while rapid drift is coupled with fast forgetting and low variance. We present experiments that support the existence of such a sweet path. We also demonstrate that simple learners that select appropriate forgetting rates and bias/variance profiles are highly competitive with the state-of-the-art in incremental learners for concept drift on real-world drift problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameters Estimation and Bias Correction

This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter as observed in many empirical studies, we develop expansions for the bias and variance of parameter estimators for two mostl...

متن کامل

Parameter estimation and bias correction for diffusion processes

This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter as observed in many empirical studies, we develop expansions for the bias and variance of parameter estimators for two mostl...

متن کامل

Research on the Modeling of Random Drift Error and Filtering Technology of Low Cost MEMS Gyroscope

In order to improve the precision of the low cost MEMS gyroscope and reduce the influence of the random drift error on the measurement system. In this paper, the Allan variance method, mean filtering method, time series analysis method and Kalman filtering technique are used to analyze and filter the random error of static output of MEMS gyroscope. The results show that the amplitude of the ran...

متن کامل

Excess false positive rate caused by population stratification and disease rate heterogeneity in case-control association studies

Case–control association studies using unrelated cases and controls may suffer from potential confounding due to population stratification. Bias and variance distortion caused by population stratification in the commonly used allele-based tests can considerably inflate the Type I error rate. It is shown that the bias vanishes in the absence of disease rate heterogeneity. If only population stra...

متن کامل

A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate

Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.09354  شماره 

صفحات  -

تاریخ انتشار 2018